ESP Thread Border Router SDKs

Espressif Thread Border Router solution is based on the combination of Espressif’s Wi-Fi
and 802.15.4 SoCs, built on the ESP-IDF and open-source OpenThread stack.

rder Router

OpenThread

ESP OpenThreac

% ESP-IDF

ESP32 UART / SPI
HW Platform ESP32-C

ESP32-S PTA

SW Stack

ESP32-H

ESP-Thread-Border-Router Software Components3

This solution has obtained the Thread 1.3 Certified Component Certificate issued by the
Thread Group, complying with the latest Thread 1.3 standard, and supporting Matter

application scenario.
It provides the following features:
e Bi-directional IPv6 Connectivity

e Service Discovery
e Multicast Forwarding

e NAT64
e RCP update

e RF coexistence
e Web GUI

Table of Contents-

1. Hardware Platforms
o 1.1. Wi-Fi based Thread Border Router
o 1.2. Ethernet based Thread Border Router
o 1.3. Contents and Packaging

o 1.4. Related Documents

2. Development Guide
o 2.1.Build and Run
o 2.2.Setting up the Local OTA Server
o 2.3. OTA Update Mechanism
3. ESP Thread Border Router Codelab
o 3.1. Bi-directional IPv6 Connectivity

o 3.2. Multicast Forwarding

o 3.3.Service Discovery
o 3.4.NAT64
o 3.5.WEB GUI
4. API Reference
o 4.1.RCP Update
o 4.2.Border Router HTTP OTA

1. Hardware Platforms:

The Espressif Thread Border Router supports both Wi-Fi and Ethernet interfaces as
backbone link.

1.1. Wi-Fi based Thread Border Routers

The Wi-Fi based ESP Thread Border Router consists of two SoCs:

e The host Wi-Fi SoC, which can be ESP32, ESP32-S and ESP32-C series
SoC.

e The radio co-processor (RCP), which is an ESP32-H series SoC. The RCP
enables the Border Router to access the 802.15.4 physical and MAC layer.

Espressif provides a Border Router board which integrates the host SoC and the RCP
into one module.

O O &
| ® 80¥T1(A7) i RESETA(Ea) :
) ESP Thread Border Router
' /Zigbee Gateway V1.2

www. espressif.com
D
Y0e

e N S o

FCrESP32-53 tiw LU}

it} ”2
R

LAIRNEE

Ny wenml

FEET
U2 gz
FIPrrSSSSS Y

2UYNOW fi

BURKEE ||
(WT) BHANTE
2662402202 2 0LAIND, |

-
8
O
m
>
m
o
[ﬁ
o
v
|
|t
|
irs
ot
|
n
ot
0

imf-
LW

3

fa
I=:
1=

LIPS

|
=1
=1

IDOENESISE- 20
A< |(l¢'ﬂ’5—> s
11 «-n{‘ls‘eo-a.ﬂ | : . o $ E,n -
| NOOHM-ESSERSSIE | 4 — -~ (i, - - :

i TXDa 42 40 38 3
T
¥}

- -
< - 5 - »

1)
I
2 v
NESE | Z

ESP Thread Border Router/Zigbee Gateway Board3

1.2. Ethernet based Thread Border Routers

Similar to the previous Wi-Fi based Thread Border Route setup, but a device with
Ethernet interface is required.

Espressif provides a Sub-Ethernet daughter board, which works with the ESP Thread
Border Router board to extend Ethernet interface.

ESP Thread Border Router/Zigbee Gateway Sub-Ethernet

1.3. Contents and Packagings

Ordering Informations

The development board has a variety of variants to choose from, as shown in the table
below.

Ordering Code On-board Module Flash [A] PSRAM Description
ESP Thread
ESP Thread BR- EiingggsvzvRch)o " 4B 2 MB Border
Zigbee GW Router/Zigbee
MINI-1
Gateway Board
ESP Thread
Border
ESP Thread BR- .
; Router/Zigbee
Zighee GW_SUB Gateway Sub-
Ethernet

>

The flash is integrated in the chip’s package.

Retail Orderss

If you order one or several samples, each board comes in an individual package in either
antistatic bag or any packaging depending on your retailer.

For retail orders, please go to https://www.espressif.com/en/company/contact/buy-a-
sample.

Wholesale Orderss

If you order in bulk, the boards come in large cardboard boxes.

For wholesale orders, please go to https://www.espressif.com/en/contact-us/sales-
questions.

1.4. Related Documentss

o ESP Thread Border Router/Zigbee Gateway Board schematic (PDF)

e ESP Thread Border Router/Zigbee Gateway Sub-Ethernet (PDF)
PreviousNext

2. Development Guides

2.1. Build and Runs

This document contains instructions on building the images for ESP Thread Border
Router and CLI device and forming a Thread network with the devices.

2.1.1. Set up the Repositoriess

Clone the esp-idf and the esp-thread-br repository.

git clone -b v5.1.1 --recursive https://github.com/espressif/esp-idf.git
cd esp-idf

./install.sh

. ./export.sh

€el oo

git clone --recursive https://github.com/espressif/esp-thread-br.git

If you are new to ESP-IDF, please follow the ESP-IDF getting started guide to set up the

IDF development environment and get familiar with the IDF development tools.

2.1.2. Build the RCP Images

Build the esp-idf/examples/openthread/ot_rcp example. The firmware doesn’t need to be

explicitly flashed to a device. It will be included in the Border Router firmware and
flashed to the ESP32-H2 chip upon first boot.

cd $IDF_PATH/examples/openthread/ot_rcp

Select the ESP32-H2 as the RCP.

idf.py set-target esp32h2

The default communication interface on the ESP Thread Border Router board is UARTO
with 460800 baudrate, which can be configured in esp ot config.h.

idf.py menuconfig

idf.py build

2.1.3. Configure ESP Thread Border Routers

Go to the basic_thread_border_router example folder.

cd esp-thread-br/examples/basic_thread_border_router

The default configuration works as is on ESP Thread Border Router board, the default
SoC target is ESP32-S3.

To run the example on other SoCs, please configure the SoC target using command:

idf.py set-target <chip_name>

For any other customized settings, you can configure the project in menuconfig.

idf.py menuconfig

2.1.3.1. Wi-Fi based Thread Border Routers

By default, it is configured as Wi-Fi based Thread Border Router.

The Wi-Fi SSID and password must be set in menuconfig. The corresponding options

are Example Connection Configuration -> WiFi SSID and Example Connection Configuration -

> WiFi Password.

The auto start mode is enabled by default, the device will connect to the configured Wi-
Fi and form Thread network automatically, and then act as the border router.

The following configuration options are all optional, jump to 2.1.4. Build and Run the

Thread Border Router if you don’t need any customized settings.

2.1.3.2. Ethernet based Thread Border Routers

The border router can also be configured to connect to an Ethernet network. In this
case, the daughter board Esp Thread Border Router/zZigbee Gateway Sub-Ethernet iS required

to extend the Ethernet interface.

The following options need to be set:

e Enable ExaMPLE CONNECT ETHERNET
e Disable ExamPLE_CONNECT WIFI

The configurations of exampLE_connecT_ETHERNET as following:

Parameter Value Note

Type W5500 Module Mandatory
Stack Size 2048 Customized
SPI Host SPI2 Mandatory
SPI SCLK GP1021 Mandatory
SP1 MOSI GP1045 Mandatory
SPI MISO GP1038 Mandatory
SPI CS GP1041 Mandatory
SPI Interrupt GPI1039 Mandatory
SPI SPEED 36 MHz Customized
PHY Reset GP1040 Mandatory
PHY Address 1 Mandatory

The configuration result would look like this.

Espressif IoT Development Framework Configuration
[] connect using WiFi interface
[*] connect using Ethernet interface
(2048) emac_rx task stack size
Ethernet Type (W5500 Module) --->
(2) SPI Host Number
(21) SPI SCLK GPIO number
(45) SPI MOSI GPIO number
(38) SPI MISO GPIO number
(41) SPI CS GPIO number
(36) SPI clock speed (MHz)
(39) Interrupt GPIO number

(40) PHY Reset GPIO number
(1) PHY Address
[*] Obtain IPv6 address
Preferred IPv6 Type (Local Link Address) --->

2.1.3.3. Thread Network Parameterss

The Thread network parameters could be pre-configured
with oPENTHREAD NETWORK xx options.

2.1.3.4. Communication Interfaces

The default communication interface between host SoC and RCP is UART.

In order to use the SPI interface instead,
the oPENTHREAD_RcP_spT and OPENTHREAD_RADIO SPINEL_sPI options should be enabled

in ot_rcp and basic_thread_border_router e€xample configurations, respectively. And set

corresponding GPIO numbers in esp_ot_config.h.

2.1.3.5. Manual Modes

Disable openTHREAD BR_AUTO START option if you want to setup the network manually. Then

the following CLI commands can be used to connect Wi-Fi and form a Thread network:

wifi connect -s <ssid> -p <psk>
dataset init new

dataset commit active

ifconfig up

thread start

2.1.3.6. RF External coexistences

Enable externaL_coex_enasLE option if you want to enable the RF External coexistence.

To enable external coexistence of the Thread Border Router, enable
the ExTERNAL_cOEx_ENABLE option of $IDF_PATH/examples/openthread/ot_rcp before building the

RCP Image.

2.1.4. Build and Run the Thread Border Routers

Build and Flash the example to the host SoC.

idf.py -p #{PORT_TO BR} flash monitor

The following result will be shown in your terminal:

Wi-Fi Border Router:

(555) cpu_start: Starting scheduler on PRO CPU.

(0) cpu_start: Starting scheduler on APP CPU.

(719) example_connect: Start example_ connect.

(739) wifi:wifi firmware version: 4d93d42

(899) wifi:mode : sta (84:f7:03:c0:d1:e8)

(899) wifi:enable tsf

(899) example_connect: Connecting to xxxx...

(899) example_connect: Waiting for IP(s)

(5719) example_connect: Got IPv6 event: Interface "example netif_sta" address:
fe80:0000:0000:0000:8617:03ff:fec0:dle8, type: ESP_IP6_ADDR_IS LINK_ LOCAL

I (5719) esp_netif_handlers: example netif sta ip: 192.168.1.102, mask: 255.255.255.0, gw:
192.168.1.1

I (5729) example connect: Got IPv4 event: Interface "example netif sta" address: 192.168.1.102
I (5739) example_common: Connected to example netif_sta

I (5749) example _common: - IPv4 address: 192.168.1.102,

I (5749) example_common: - IPv6 address: fe80:0000:0000:0000:86f7:03ff:fec0:d1le8, type:
ESP_IP6_)

I(5779) OPENTHREAD:[I] Platform------ : RCP reset: RESET_POWER_ON

I(5809) OPENTHREAD:[N] Platform------ : RCP API Version: 6

I (5919) esp_ot_br: RCP Version in storage: openthread-esp32/8282dca796-e64bal3fa; esp32h2;
2022-10-10 06:01:35 UTC

I (5919) esp_ot_br: Running RCP Version: openthread-esp32/8282dca796-e64bal3fa; esp32h2;
2022-10-10 06:01:35 UTC

I (5929) OPENTHREAD: OpenThread attached to netif

I(5939) OPENTHREAD:[I] SrpServer----- : Selected port 53535

I(5949) OPENTHREAD:[I] NetDataPublshr: Publishing DNS/SRP service unicast (ml-eid, port:53535)

HHHHHHHHH

Ethernet Border Router:

(793) cpu_start: Starting scheduler on PRO CPU.

(793) cpu_start: Starting scheduler on APP CPU.

(904) system_api: Base MAC address is not set

(904) system_api: read default base MAC address from EFUSE

(924) esp_eth.netif.netif_glue: 70:b8:f6:12:c5:5b

(924) esp_eth.netif.netif_glue: ethernet attached to netif

(2524) ethernet_connect: Waiting for IP(s).

(2524) ethernet_connect: Ethernet Link Up

I (3884) ethernet_connect: Got IPv6 event: Interface "example_netif_eth" address:
fe80:0000:0000:0000:72b8:f6ff:fel2:c55b, type: ESP_IP6_ADDR_IS_LINK_LOCAL

I (3884) esp_netif_handlers: example_netif_eth ip: 192.168.8.148, mask: 255.255.255.0, gw:
192.168.8.1

I (3894) ethernet connect: Got IPv4 event: Interface "example netif eth" address:
192.168.8.148

I (3904) example_common: Connected to example_netif_eth

HHHHHKHH H

I (3904) example_common: - IPv4 address: 192.168.8.148,
I (3914) example_common: - IPv6 address: fe80:0000:0000:0000:72b8:T6fI(3944) OPENTHREAD:[I]
Platform------ : RCP reset: RESET_POWER_ON

I(3974) OPENTHREAD:[N] Platform------ : RCP API Version: 6

I(4144) OPENTHREAD:[I] Settings------ : Read NetworkInfo {rloc:0x4400,
extaddr:129f848762f1c578, role:leader, mode:0x0f, version:4, keyseq:0x0,

I(4154) OPENTHREAD:[I] Settings------ ¢ ... pid:0x18954426, mlecntr:0x7da7, maccntr:0x7dlc,

mliid:2874d9fa90dc8093}
I (4194) OPENTHREAD: OpenThread attached to netif

2.1.5. Build and Run the Thread CLI Devices

Build the esp-idf/examples/openthread/ot_cli example and flash the firmware to another
ESP32-H2 devkit.

cd $IDF_PATH/examples/openthread/ot_cli

idf.py -p ${PORT_TO _ESP32 H2} flash monitor

2.1.6. Attach the CLI Device to the Thread Networks

First acquire the Thread network dataset on the Border Router:

dataset active -x

The network data will be printed on the Border Router:

> dataset active -x

0e080000000000010000000300001335060004001fffe00208deadddbeefOOcated708fdfaeb6813dbO63b05101122
33445566778899aabbccddeeff000301f4170656e5468726561642d34396436010212340410104810e2315100atd6bc

9215a6bfac530c0402a0F718
Done

Commit the dataset on the CLI device with the acquired dataset:

dataset set active

0e080000000000010000000300001335060004001fffe00208deadddbeefOOcated708fdfaeb6813dbO63b05101122
33445566778899aabbccddeeff0003014170656e5468726561642d34396436010212340410104810e2315100afd6bc

9215a6bfac530c0402a0f78

Set the network data active on the CLI device:

dataset commit active

Set up the network interface on the CLI device:

ifconfig up

Start the thread network on the CLI device:

thread start

The CLI device will become a child or a router in the Thread network:

> dataset set active
0e080000000000010000000300001335060004001fffe00208deadddbeefOOcated708fdfaeb6813db063b05101122
33445566778899aabbccddeeff0003014170656e5468726561642d34396436010212340410104810e2315100afd6bc
9215a6bfac530c0402a0F718

Done

> dataset commit active

Done

> ifconfig up

Done

I (1665530) OPENTHREAD: netif up

> thread start

I(1667730) OPENTHREAD:[N] Mle----------- : Role disabled -> detached

Done

> I(1669240) OPENTHREAD:[N] Mle----------- : RLOC16 5800 -> fffe

I(1669590) OPENTHREAD:[N] Mle----------- : Attempt to attach - attempt 1, AnyPartition
I1(1670590) OPENTHREAD:[N] Mle----------- : RLOC16 fffe -> 6c01

I(1670590) OPENTHREAD:[N] Mle----------- : Role detached -> child

2.2. Setting up the Local OTA Servers

This document contains instructions on setting up a self-signed HTTPS OTA server on
the local host and configuring the Border Router to trust the server.

Generating the Server Certificates

Create a new directory ota_server_storage to host the server. Then generate the

certificate in this directory:

mkdir ota_server_storage && cd ota_server_storage
openssl req -x509 -newkey rsa:2048 -keyout ca_key.pem -out ca_cert.pem -days 365 -nodes
Note that when prompted for the common name (cn) , the name entered shall match the

hostname running the server.

The Border Router OTA image will be automatically generated when building
the basic_thread_border_router example. Copy it to the previously created

directory ota_server_storage .

cp esp-thread-br/examples/basic_thread_border_router/build/br_ota_image ota_server_storage

Rebuilding the Border Router Firmware with the New
Certificates

The certificate server_certs/ca_cert.pem in the basic_thread_border_router example shall be

replaced with the generated certificate. Perform a fullclean and build the application
again:

cp path/to/ota_server_storage/ca_cert.pem server_certs/ca_cert.pem
idf.py fullclean
idf.py flash monitor

To download the image from the server and run the following command on the Border
Router:
ota download https://#{HOST_URL}:8070/br_ota_image

PreviousNext

2.3. OTA Update Mechanisms

The ESP Thread Border Router supports building the RCP image into the Border Router
image. Upon boot the RCP image will be automatically downloaded to the RCP if the
Border Router detects the RCP chip failure to boot.

Hardware Prerequisitess

To perform OTA update, the following devices are required:

e An ESP Thread Border Router

e A Linux Host machine
In addition to the UART connection to the RCP chip, two extra GPIO pins are required to
control the RESET and the BOOT pin of the RCP. For ESP32-H2 the BOOT pin is GPIO8.

Download and Update the Border Router Firmwares

Create a HTTPS server providing the OTA image file, excute the follow command on
your Linux Host machine:

openssl s_server -WWW -key ca_key.pem -cert ca_cert.pem -port 8070

The private key and the certificate shall be accpetable for the Border Router. If they are
self-signed, make sure to add the public key to the trusted key set of the Border Router.

Now the image can be downloaded on the Border Router:

ota download https://${HOST URL}:8070/br_ota_image

e Tips 1: For optimizing the firmware of border
router, CONFIG_COMPILER_OPTIMIZATION_SIZE and CONFIG_NEWLIB_NANO
_FORMAT are enabled by default.
e Tips 2: If the OTA function is enabled, it is recommended to optimize the
ot_rcp firmware size before building the OTA image. Please refer to ot_rcp
README for detailed steps.
After downloading the Border Router will reboot and update itself with the new
firmware. The RCP will also be updated if the firmware version changes.

The RCP Image Rollback Mechanisms

The RCP image is stored in a configurable SPIFFS partition under a configurable prefix.
Prefix ot_rcp will be used in as an example.

Two folders ot_rcp_0 and ot_rcp_1 will be used to store the current and the backup RCP
image. The RCP image will be stored in ot_rcp_0 upon first boot. An extra key-value pair
will be added in the nvs for storing the current RCP image index.

When applying the RCP update, the RCP image with the current index will be
downloaded. After the reboot, the Border Router will detect the status of the RCP. If the
RCP fails to boot, the backup image will be flashed to the RCP to revert the change.

When downloading the OTA image from the server, the current RCP image will be

marked as the backup image and the previous backup image will be overridden. After the
download completes, the current image index will be updated.

The OTA Image File Structures

The OTA image is a single file containing the meta data of the RCP image, the RCP
bootloader, the RCP partition table and the firmwares.

The image can be generated with

script basic_thread_border_router/create_ota_image.py. By default this file is called
automatically during build and packs the ot_rcp example image into the Border Router
firmware.

The RCP image header is defined as the following diagram:

Oxff Header size 0
File Type 0 File size File offset
File Type 1 File size File offset

The file type is defined as the following table:

0 RCP version

1 RCP flash arguments
2 RCP bootloader

3 RCP partition table
4 RCP firmware

5 Border Router firmware

3. ESP Thread Border Router Codelabs

3.1. Bi-directional IPv6 Connectivitys

The ESP Thread Border Router allows the devices on the Wi-Fi/Ethernet and the Thread
network to reach each other with IPvé6 addresses.

Hardware Prerequisitess

To perform bi-directional IPvé connectivity, the following devices are required:

e An ESP Thread Border Router

e A Thread CLI device

e A Linux Host machine
The Border Router and the Linux Host machine shall be connected to the same Wi-Fi
network and the Thread device shall join the Thread network formed by the Border
Router.

Validate the IPv6 Connectivitys

The Linux Host machine needs to be configured to accept the router advertisements
from the Border Router:

Setting accept_ra to 2 allows all RAs to be accepted:

sudo sysctl -w net/ipv6/conf/wlan@/accept_ra=2
Setting accept_ra_rt_info_max_plen to 128 allows all kinds of prefix length in RAs to be

accepted:

sudo sysctl -w net/ipv6/conf/wlan@/accept_ra_rt_info_max_plen=128

A global address will be assigned to the Thread CLI device. The Linux Host machine can
reach the Thread device with an address that can be obtained by running the
command ipaddr on the CLI device.

ipaddr
The command would produce the similar output:

> ipaddr
fd66:afad:575f:1:744d:573e:6€60:188a
£d87:8205:4651:27¢c8:0:ff:fe00:0
£d87:8205:4651:27c8:e65a:3138:745a:df06
fe80:0:0:0:2433:db2e:62c:b2e4d

Done

The Linux Host reachable address is fde6:afad:575f:1:744d:573e:6e60:188a , yOU Can ping

this address from Linux Host using the following command:

ping fd66:afad:575f:1:744d:573e:6€60:188a
You well get these output:

$ ping fdé66:afad:575f:1:744d:573e:6€60:188a
PING fd66:afad:575f:1:744d:573e:6e60:188a(fd66:afad:575f:1:744d:573e:6e60:188a) 56 data bytes

64 bytes from fd66:afad:575f:1:744d:573e:6e60:188a: icmp seq=1 ttl=254 time=187 ms
64 bytes from fd66:afad:575f:1:744d:573e:6e60:188a: icmp seq=2 ttl=254 time=167 ms

3.2. Multicast Forwardings

Multicast Forwarding allows reaching devices on the Thread and Wi-Fi network in the
same multicast group from both sides.

Hardware Prerequisitess

To perform Multicast Forwarding, the following devices are required:

e An ESP Thread Border Router

e A Thread CLI device

e A Linux Host machine
The Border Router and the Linux Host machine shall be connected to the same Wi-Fi
network and the Thread device shall join the Thread network formed by the Border
Router.

Limits on Multicast Groupss

Note that to forward packets between the Thread and the Wi-Fi network, the multicast
group scope shall be at least admin-local(ffO4). Link-local and realm-local multicast
packets will not be forwarded.

Reaching the Multicast Group from the Wi-Fi Network
via ICMPs

First, join the multicast group on the Thread CLI device:

mcast join ff04::123
Now you can ping Thread CLI device on your Linux Host:

ping -I wlan@ -t 64 ff04::123

The output similar to shown below may indicate that the device can be reached on the
Wi-Fi network via the multicast group:

$ ping -I wlan@ -t 64 ffo4::123
PING ff04::123(ff04::123) from fdde:ad@o:beef:cafe:2eea:7fff:fe37:b4fb wland: 56 data bytes
64 bytes from fd66:afad:575f:1:744d:573e:6e60:188a: icmp seq=1 ttl=254 time=132 ms

Reaching the Multicast Group from the Wi-Fi Network
via UDPs

First, join the multicast group and create a UDP socket on the Thread CLI device:

> mcast join ff04::123
Done

> udp open

Done

> udp bind :: 5083
Done

Use the following python script, which is named multicast udp client.py, to send UDP

messages to the Thread CLI device via the multicast group:

import socket
import time

data = b'hello’

group = 'ff04::123"'

REMOTE_PORT = 5083

network_interface = 'wlan@' # Change to the actual interface name

sock = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO BINDTODEVICE, network_interface.encode())
sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_MULTICAST_HOPS, 32)

sock.sendto(data, (group, REMOTE_PORT))

sock.close()

On the Linux Host machine, you need to start a UDP client by running this script:

python3 multicast_udp_client.py
On the Thread CLI device, the message will be printed:

> mcast join ff04::123

Done

> udp open

Done

> udp bind :: 5083

Done

5 bytes from fd11:1111:1122:2222:439e:272e:6a50:cf61 56024 hello

Reaching the Multicast Group from the Thread
Networks

Use the following python script, which is named multicast udp_server.py, to join an

admin-local group and set up a UDP server on the Linux machine:

import socket
import struct

if_index = socket.if_nametoindex('wlan®@"')
sock = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
sock.bind(('::", 5083))
sock.setsockopt (
socket.IPPROTO_IPV6, socket.IPV6_JOIN_GROUP,
struct.pack('16si', socket.inet_pton(socket.AF_INET6, 'ff04::123"),
if_index))
while True:
data, sender = sock.recvfrom(1024)
print(data, sender)

On the Linux Host machine, you need to start a UDP server by running this script:

python3 multicast_udp_server.py
After launching the script and the Thread CLI device will be able to send UDP messages
to the Linux Host via the multicast group:

udp open
udp send ff04::123 5083 hello

You will get a result pone after executing each of the commands, the expected output is
below:

> udp open

Done

> udp send ff04::123 5083 hello
Done

On the Linux Host machine, the message will be printed:

$ python3 multicast_udp_server.py
b'hello' ('fd66:afad:575f:1:744d:573e:6€60:188a', 49154, 0, 0)

3.3. Service Discoverys

The ESP Thread Border Router allows devices on the Thread and Wi-Fi/Ethernet
network to discover services published on both the networks.

Hardware Prerequisitess

To perform service discovery, the following devices are required:

e An ESP Thread Border Router

e A Thread CLI device

e A Linux Host machine
The Border Router and the Linux Host machine shall be connected to the same Wi-Fi
network and the Thread device shall join the Thread network formed by the Border
Router.

Publishing Services from the Thread Networks

Thread uses the Service Registration Protocol (SRP) to register services. First, publish the
service on the Thread CLI device.

Using this command line to set host name:

srp client host name thread-device
Using this command line to set host address, you can set default address with auto:

srp client host address auto

Using this command line to set parameter of the service:

srp client service add thread-service _test._ tcp,_subl, sub2 12345 1 1 ©778797a3d58595a
Using this command line to enable the service:

srp client autostart enable
You will get a result pone after executing each of the commands, the expected output is

below:

> srp client host name thread-device

Done

> srp client host address auto

Done

> srp client service add thread-service _test. tcp, subl, sub2 12345 1 1 ©778797a3d58595a
Done

> srp client autostart enable

Done

You can execute this command on the Border Router to resolve the service:

srp server service

The service can be found on the Border Router:

> srp server service

thread-service. test._tcp.default.service.arpa.
deleted: false
subtypes: _sub2, subl
port: 12345
priority: 1
weight: 1
ttl: 7200
TXT: [xyz=58595a]
host: thread-device.default.service.arpa.
addresses: [fd66:afad:575f:1:744d:573e:6e60:188a]
Done

The service can also be found on the Wi-Fi with the Linux Host machine by using this
command:

avahi-browse -rt _test. tcp

The expected output is below:

$ avahi-browse -rt _test. tcp

+ enpls@ IPv6 thread-service _test._tcp local
+ enpls@ IPv4 thread-service _test._tcp local
= enpls@ IPv6 thread-service _test._tcp local

hostname = [thread-device.local]
address = [fd66:afad:575f:1:744d:573e:6€60:188a]
port = [12345]
txt = ["Xyz=XYZ"]
= enpls@ IPv4 thread-service _test. _tcp local
hostname = [thread-device.local]
address = [fd66:afad:575f:1:744d:573e:6€60:188a]
port = [12345]
txt = ["Xxyz=XYZ"]

Publishing Services from the Wi-Fi Networks

First publish the service on the Linux Host machine with mDNS:

avahi-publish-service wifi-service _test._tcp 22222 test=1 dn="aabbbb"

If the service is established, you will get this output on your Linux Host machine:

$ avahi-publish-service wifi-service _test._tcp 22222 test=1 dn="aabbbb"
Established under name ‘wifi-service’

Then get the Border Router’s Mesh-Local Endpoint Identifier, and configure it on the
Thread end device. On the Border Router:

ipaddr mleid
You will get:

> ipaddr mleid
fdde:ad0@0:beef:0:1891:287:866:776
Done

On the Thread CLI device:

dns config fdde:ado@:beef:0:¥891:287:866:776
You will get:

> dns config fd9b:347f:9317:1:1003:8f00:bccl:3038
Done

The service can be resolved on the Thread CLI device by executing this command:

dns service wifi-service _test._tcp.default.service.arpa.

The expected output on the Thread CLI device is below:

> dns config fdde:ad@@:beef:0:f891:287:866:776

Done

> dns service wifi-service _test._tcp.default.service.arpa.

DNS service resolution response for wifi-service for service _test._tcp.default.service.arpa.
Port:22222, Priority:0, Weight:0, TTL:120

Host:FA@01388.default.service.arpa.

HostAddress:fd33:1cc4:abec:2e0:2eea:7fff:fe37:b4fb TTL:120

TXT:[test=31, dn=616162626262] TTL:120

Done

3.4. NAT64s

The ESP Thread Border Router supports NAT64 which allows Thread devices to visit the
IPv4 Internet.

Hardware Prerequisitess

To perform NATé64, the following devices are required:

e An ESP Thread Border Router
e A Thread CLI device
The Thread device shall join the Thread network formed by the Border Router.

Visiting the IPv4 HTTP Serverss

For visiting HTTP servers with domain names, the DNS server shall be first configured
on the Thread CLI device:

dns64server 8.8.8.8

Then you can use curl <website> command to get the data form the specific website(for
example http://www.espressif.com)Z

curl http://www.espressif.com

The Thread device will first resolve the host with UDP packets sent to the IPv4 DNS
server. Then retrieve the page from the IPv4 HTTP server via TCP. The expected output
is below:

> dns64server 8.8.8.8

Done

> curl http://www.espressif.com

Done

> I (22289) HTTP_CLIENT: Body received in fetch header state, @x3fcca6b7, 183
<html>

<head><title>301 Moved Permanently</title></head>
<body bgcolor="white">

<center><h1>301 Moved Permanently</hl></center>
<hr><center>CloudFront</center>

</body>

</html>

3.5. WEB GUIs

The ESP Thread Border Router is equipped with a user-friendly graphical user interface
(GUI) that enables users to easily discover, configure, and monitor Thread networks
through the web server.

To access the Web GUI, simply enter the local 1pv4 address for the ESP Thread Border
Router in your browser window with port se and the path index.html.

£ esp32-OpenThread-aloT x RS

« (&) O & 192.168.203.245/index.htm B ® 9

ESPRESSIF-OpenThread

Home Scan Form Status Contact

Espressif Thread Border Router WEB-GUI

Espressif Systems (688018.SH) is a public multinational, fabless semiconductor company established in 2008, with offices in China, the Czech Republic, India, Si
ngapore and Brazil. We have a passionate team of engineers and scientists from all over the world, focused on developing ci
ower, AloT solutions. We have created the popular ESP8266, ESP32, ESP32-S, ESP32-C and ESP32-H series of chips, mo
ging wireless computing, we provide green, versatile and cost-effective chipsets. We are committed to offering solutions that are
the same time, by open-sourcing our technology and solutions, we aim to enable developers to use Espressif's solutions globally and build their own smart-connected

dge wireless communication, low-p
development boards. By levera
ure, robust and power-efficient. At

devices.

Espressif loT Development Framework. ESP Thread Border Router SDK.
ESP-IDF s the develoy or Espressif So(n Window ESP-Thread-BR is the official ESP Thread Border Router SDK. It supports all fun-
s, Linux and macOS. Espres hardw: es 1o help k features to build a Thread Border Router and integrates rich product |

application developers realize their ideas using the E

s hardware.

s for quick productization.

ESP-Thread-Border-Router GUIS

Prerequisitess

To perform web gui, the follow device are required:

e An ESP Thread Border Router

e A Linux host machine with browser
Enable the conFic oPENTHREAD BR_START SERVER option to enable the Web Server feature.

The Thread Border Router and the Linux Host machine shall be connected to the same
Wi-Fi network that has access to the Internet.

When the ESP Thread Border Router starts up, it will print the website’s access address
to terminal of the Linux host.

such as:

otbr_web; {=======================§e@rver startss======================>
otbr_web: http://192.168.200.98:80/index.html

O N e DR === === e = e e e e e o

All REST APIs can be accessed by visiting the IPv4 address of the Thread-Border-Router-
Board using the 1P on port 80 with the API field specified.

Thread REST APIss

The ESP Thread Border Router server provides the REST APlIs that are compatible
with ot-br-posix

The Thread REST APIs field
include /diagnostics, /node, /node/rloc, /node/rlocl6, /node/ext-

address, /node/state, /node/network-name, /node/leader-data, /node/num-of-router, /node/ext-

panid and /node/active-dataset-tlvs .

Entering this link to the browser of Linux machine:

http://192.168.200.98:80/node

The following feedback result will display on the browser:

{
"NetworkName": "OpenThread-4c68",
"ExtPanId": "f4f9437404558d34",
"ExtAddress": "caf97e6ee990b047",
"RlocAddress": "fd12:cb40:859f:287e:0:ff:fe00:3800",
"LeaderData": {
"PartitionId": 61563841,
"Weighting": 64,
"DataVersion": 211,
"StableDataVersion": 110,
"LeaderRouterId": 14
s
"State": 4,
"Rlocl6": 14336,
"NumOfRouter": 1
¥

The access method for other APIs is similar to the one described above.

Web GUI REST APIss

The web server of ESP Thread Border Router provides the avaiable network API to

discover the all available Thread networks.

Entering this link to the browser of Linux machine:

http://192.168.200.98:80/available_network

The feedback result may appear as follows:

{
"error": 0,
"result": [{
"id": g
"nn": "OpenThread",
"ep": "dead@obeefoOcafe"”,
"pi": "@xa@6d",
"ha": "5alee78f873814fc",
"ch": 11,
"ri": -35,
"1it: 229
b A
"id": 2,
"nn": "GRL",
"ep": "000db8000000V00L0" ,
"pi": "oxfacf",
"ha": "166€020000000003" ,
"ch": 17,
"ri": -70,
"1it: 51
oA
"id": 3,
"nn": "NEST-PAN-3DDF",
"ep": "4500ddd4f9c1597d",
"pi": "Ox3ddf",
"ha": "9e517ed148e81409",
"ch": 20,
PRt g -39,
"1it: 209
Jap
"message": "Networks: Success"
}

The web server of ESP Thread Border Router provides the get properties API to check

the Thread network status.

Entering this link to the browser of Linux machine:

http://192.168.200.98:80/get_properties

The feedback result may appear as follows:

{
"error": 9,
"result": {
"IPv6:LinkLocalAddress": "fe80:0:0:0:c8f9:7e6e:€990:b047",

"IPv6:RoutinglLocalAddress": "fd12:cb40:859f:287e:0:ff:fe00:3800",
"IPv6:MeshLocalAddress": "fd12:cb40:859f:287e:a8b5:c617:396b:a4c2",

"IPv6:MeshLocalPrefix": "fd12:cb40:859f:287e::/64",

"Network:Name": "OpenThread-4c68",
"Network:PANID" : "0x1254",
"Network:PartitionID": "61563841",
"Network:XPANID" : "f4f9437404558d34",
"OpenThread:Version": "openthread-esp32/f4446d8819-091f68ed7; esp32s3; 2023-05-
05 13:05:02 UTC",
"OpenThread:Version API": "292",
"RCP:State": "leader",
"OpenThread:PSKc": "e66d93364793c33985280abb639c214c",
"RCP:Channel": 12",
"RCP:EUI64": "6055f9f72eebfeff",
"RCP:TxPower": "10 dBm",
"RCP:Version": "openthread-esp32/f4446d8819-091f68ed7; esp32h2; 2023-05-04
08:35:37 UTC",
"WPAN service": "associated”
s
"message": "Properties: Success”

}

The web server of ESP Thread Border Router provides the node _information API to otbain

the Thread node information.

Entering this link to the browser of Linux machine:

http://192.168.200.98:80/node_information

The feedback result may appear as follows:

{
"error": 9,
"result”: {
"NetworkName" : "OpenThread-4c68",
"ExtPanId": "f4f9437404558d34",
"ExtAddress": "caf97e6ee990b047",
"RlocAddress": "£d12:cb40:859f:287e:0:ff:fe00:3800",
"LeaderData": {
"PartitionId": 61563841,
"Weighting": 64,
"DataVersion": 225,
"StableDataVersion": 124,
"LeaderRouterId": 14
T
"State": 4,
"Rloc16": 14336,
"NumOfRouter": 1
s
"message": "Get Node: Success"
}

The web server of ESP Thread Border Router provides the topology API to retrieve

information about the relationship between Thread networks.

Entering this link to the browser of Linux machine:

http://192.168.200.98:80/topology

The feedback result may appear as follows:

{
"error": 0,
"result": [{
"ExtAddress": "caf97e6ee990b047",
"Rlocl6": 14336,
"Mode": {
"RxOnWhenIdle": 1,
"DeviceType": ibg
"NetworkData": 1
s
"Connectivity": {
"ParentPriority": 9,
"LinkQuality3": 0,
"LinkQuality2": 0,
"LinkQuality1l": 0,
"LeaderCost": 0,
"IdSequence": 131,
"ActiveRouters": 1,
"SedBufferSize": 1280,
"SedDatagramCount": 1
T
"Route": {
"IdSequence": 131,
"RouteData": [{
"RouteId": 14,
"LinkQualityOut": 9,
"LinkQualityIn": 9,
"RouteCost": 1
il
Ts
"LeaderData": {
"PartitionId": 61563841,
"Weighting": 64,
"DataVersion": 229,
"StableDataVersion": 128,
"LeaderRouterId": 14
bs
"NetworkData":

"08040b02cCcab0b0e8001010d09380000000500000e10031400401d634dCc949600010504380011000702114003010
040fdf4f94374048d3401033800000b1981015d0d143800fd12cb408591287ea8b5c617396badc2d11f03130060Fd6

34dc9496€00020000000001033800e0" ,
"IP6AddressList": [
"fd12:cb40:859f

"£d12:cb40:859f:
"£d12:cb40:859f:
"£d12:cb40:859f:
"£d12:cb40:859f:
"£d12:cb40:859f:

:287e
"£d63:4dc9:496e:

:0:ff:fe00:fc11",

1:9967:1ba3:5fbf:f2e6",

287e

287e:
287e:
287e:

287e

:0:ff:fe00:fc10",
0:ff:fe00:fc38",
0:ff:fe00:fco0",
0:ff:fe00:3800",
:a8b5:¢c617:396b:ad4c2",

"fe80:0:0:0:c8f9:7e6e:e990:b047"

1,
"MACCounters": {
"IfInUnknownProtos": 0,
"IfInErrors": 9,
"IfOutErrors": 0,

"IfInUcastPkts": 13,

"IfInBroadcastPkts": 56,

"IfInDiscards": 0,
"IfOutUcastPkts": 0,
"IfOutBroadcastPkts": 201,
"IfOutDiscards": 0

3

"ChildTable": [1,

"ChannelPages": "@0"

3,
"message": "Topology: Success"

}

The web server provides an H1TP_PosT entry that allows users to configure the Border
Router to use either networkkeyType oOr pskdType for joining other networks.

The JSON format of join_network APl appears as follow:

{
"credentialType": "networkKeyType",
"networkKey" : "00112233445566778899aabbccddeeff",
"pskd" 2 "12345678",
"prefix" : "fd11:22::",
"defaultRoute" : 1,
"index" : 1
}

Note that the network to be joined MUST be the networks scanned by
the available network API, the index indicates the sequence of available networks.

The web server provides an H1TP_rosT entry that allows users to configure the Border

Router to use the parameter provided by user for forming a Thread network.

The JSON format of form_network APl appears as follow:

{
"networkName" : "OpenThread-0x99",
"networkKey" : "00112233445566778899aabbccddeeff",
"panId" : "0x1234",
"channel™ : 16,
"extPanId" 2 "1111111122222222",
"passphrase” : "j01Nme",
"prefix" : "fd11:22::",
"defaultRoute" : 1
}

The web server provides an H1TP_PosT entry that allows users to configure the Border

Router for setting current Thread network.

The JSON format of add_prefix APl appears as follow:

"prefix": "fd11:22::",
"defaultRoute": 1
}

The JSON format of delete prefix APl appears as follow:

{
}

Web GUI Application Introductions

"prefix": "fd11:22::",

ESP Thread Border Router Web GUI provides practical functions including Thread
network discovery, network formation, network settings, status query and network.

Discovers

By clicking the scan button, you can discover for the available Thread networks. The

networks will be shown in the table with their network name, channel, extended panid,
panid, Mac address, txpower and so on.

Discover Thread Network

Here, you can scan for available Thread networks, and choose fo join one of them

Available Thread Networks: Scan Completed

No. Network Name Extended PAN ID PAN ID Mac Address Channel dBm LQl Action
1 ‘OpenThread-960e 949fcd4261ec8a0l 0x1254 ae601bag03bfbafe 12 -19 255 m
2 OpenThread-960e 949fcd4261ec8a0l 0x1254 3alB494adclad5ae 12 -28 255 m
3 OpenThread-e86d dada001234004321 0ox198f 1212121212121212 21 -30 255 m
4 ‘OpenThread-540d deadoobeefoocafe 0x1234 8abc033497b2eb5e 22 -48 163 m
5 OpenThread-540d dead00Obeef00cafe 0x1234 728be6d01cfabaed 22 -42 193
6 MyHome2087051184 7b5585df74d9435d 0x8df9 360aaf51cf278eae 25 -55 127 m
7 MyHome2087051184 7b5585df74d9435d 0x8df9 fza2a7bf31419bfb 25 -49 158 m
8 MyHome2087051184 7b5585df74d9435d 0x8df9 56fd960a233d94bb 25 -aa 183
9 ‘OpenThread-9ac0 17afaebbaca636b2 0x9ac0 065d5267¢2d15c69 26 -56 122 m
10 ‘OpenThread-9ac0 17afaebbaca636b2 0x%ac0 faGealab3769e89a 26 -56 122 m
11 OpenThread-9ac0 17afaesbbaca636b2 0x9ac0 3ee98a564217a739 26 -58 112
[comn

You can select an available network to join by clicking the join button. Enter the

relevant information into the pop-up dialog, submit it, and the result will be displayed for
you after a moment.

Join Information

Credential Type:

Network Key

Network Key:

1234567890abedef1234567890abedef

Prefix:

fd11:22::

Default Route:

Forms

You can form a Thread network in this section. First, you need to fill network’s
parameters in the following table. Then click the Form Network button to submit the

message. The server will validate the network information and form the network on
success.

Form Thread Network

Here, the ESP-OpenThread network would be form using the parameter provided by you

Inputing the parameter of ESP-OpenThread in Form. Form Network: Success

note: the table which marks * must be filled.

Network Name * Network Key *

OpenThread-0x99 00112233445566778899%aabbecddeeff
PANID * Network Channel *

0x1234 15

for more «

Form Network

Settingss

The IPv6 network prefix for Thread can be set in the Settings section. To add it,
click add, and to delete it, click pelete.

Delete Prefix

Delete Prefix: Success

Statuss

By clicking the overview bar, the properties of Thread network will been displayed in the

corresponding section.

Thread Network Status

The status of the ESP-OpenThread network, including its IPv6, r

rk, OpenThread, RCP, WPAN, and other componen uld be displayed here.

OverView IPv6 Network OpenThread RCP WPAN

[IP Address] [Network Information] [OpenThread Parameter] [RCP Information] [WPAN Status]

Link Local Address Name Version Channel Service
fe80:0:0:0:c8f9:7Tebe:e990:b047 OpenThread-b732 openthread-esp32/f4446d8819-091f68ed7; 15 associated
esp32s3; 2023-05-04 11:45:45 UTC
Routing Local Address PANID IEEE EUI-64
fd25:dd2d:725b:8cab:0:ff:fe00:7400 0x1234 Version API 6055f9f72eebfeff
Mesh Local Address Partition ID 22 TxPower
fd25:dd2d:725b:8cab:a8b5:c617:396h:adc2 1278166863 Role 10dBm
Mesh Local Prefix Extended PANID feader Version
fd25:dd2d:725h:8cab::164 dead00beefQ0cafe PSKc openthread-esp32/f4446d8819-
104810e2315100afd6bc9215abbfacs3 091f68ed7; esp32h2; 2023-05-
04 08:35:37 UTC

Topologys

By clicking the start Topology button, the topology of the current Thread node will be

intuitively drawn and displayed.

Thread Network Topology

The network topelogy structure of Thread will be shown in a more intuitive and detailed manner here.

Network Name: OpenThread-960e Leader: 0x0 Router Number: 3

O Selected . Leader
. Router

%) child
o

4. API References

For manipulating the Thread network, the OpenThread API shall be used. The
OpenThread APl documentation can be found at the OpenThread official website.

For interacting with the ESP OpenThread port and Border Router library, the esp-
openthread API shall be used. The esp-openthread API docs can be found at ESP-IDF
API reference page.

The additional APlIs are listed below:

4.1. RCP Updates

The RCP update component updates the RCP from a local file on the host.
API references

Header Files

e components/esp rcp update/include/esp rcp update.h
Functionss

esp_err_t esp_rcp_update_init(const esp_rcp_update_config_t *update_config)3

This function initializes the RCP update process.

Parameters
update_config - [in] The RCP update specific config

Returns
« ESP_OK
« ESP_FAIL

o ESP_ERR_INVALID_ARG If the RCP type is not supported.

esp_err_t esp_rcp_update(void)3

This function triggers an RCP firmware update.

Returns
e ESP_OK
« ESP_FAIL
e ESP_ERR_INVALID_STASTE If the RCP update is not initialized.
o ESP_ERR_NOT_FOUND RCP firmware not found in storage.

const char *esp_rcp_get_firmware_dir(void)3

This function acquires the RCP image base directory.

The real RCP image directory should be suffixed the update sequence.

int8_t esp_rcp_get_update_seq(void)3

This function retrieves the update image sequence.

The current update image sequence will be used to update the RCP.

int8_t esp_rcp_get_next_update_seq(void)3

This function retrieves the next update image sequence.

The next update image sequence will be used for the downloaded image.

void esp_rcp_reset(void)3

This function resets the RCP.

esp_err_t esp_rcp_submit_new_image(void)3

This function marks the downloaded image as valid.

The image in the next update image sequence will then be used for RCP update.

Returns
« ESP_OK
o ESP_ERR_INVALID_STASTE If the RCP update is not initialized.

esp_err_t esp_rcp_mark_image_verified(bool verified)3
This function marks previously downloaded image as valid.
Returns

« ESP_OK
e ESP_ERR_INVALID_STASTE If the RCP update is not initialized.

esp_err_t esp_rcp_mark_image_unusable(void)3
This function marks previously downloaded image as unusable.
Returns

« ESP_OK
o ESP_ERR_INVALID_STASTE If the RCP update is not initialized.

esp_err_t esp_rcp_load_version_in_storage(char *version_str, size_t size)3

This function loads the RCP version in the current update image.

Parameters
o version_str - [out] The RCP version string output.
e size - [in] Size of version_str.
Returns
e ESP_OK
e ESP_ERR_INVALID_STASTE If the RCP update is not initialized.
o ESP_ERR_NOT_FOUND RCP version not found in update image.

void esp_rcp_update_deinit(void)3

This function deinitializes the RCP update process.

Structuress

struct esp_rcp_update_config_t3

The RCP update config for OpenThread.

Public Members
esp_rcp_type_t rcp_type3
RCP type
intuart_rx_pin3

UART rx pin
intuart_tx_pin3

UART tx pin

int uart_portJ

UART port

int uart_baudrate3

UART baudrate

int reset_pinJ

RESET pin

int boot_pinJ

Boot mode select pin

uint32_t update_baudrated

Baudrate when flashing the firmware
char firmware_dir[RCP_FIRMWARE_DIR_SIZE]3
The directory storing the RCP firmware
target_chip_t target_chip3

The target chip type

Macross

RCP_FIRMWARE_DIR_SIZES
RCP_FILENAME_MAX_SIZES
RCP_URL_MAX_SIZES

Enumerationss

enum esp_rcp_type_t3
Values:

enumerator RCP_TYPE_INVALIDJ3
enumerator RCP_TYPE_ESP32H2_UARTS3

4.2. Border Router HTTP OTA-

The ESP Thread Border Router HTTP OTA component provides helper functions to
download firmware from the web server.

API references

Header Files

e components/esp br http ota/include/esp br http ota.h
Functionss

esp_err_t esp_br_http_ota(esp_http_client_config_t *http_config)I

This function performs Border Router OTA by downloading from a HTTPS server.

Parameters
http_config - [in] The HTTP server download config

Returns
e ESP_OK
o ESP_FAIL
o ESP_ERR_INVALID_STASTE If the RCP update is not initialized.
o ESP_ERR_INVALID_ARG If the http config is NULL or does not contain
an url.
Macross

OTA_MAX_WRITE_SIZES

